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1 Introduction

Modern high-throughput technologies allow us to simultaneously measure the expressions of a
huge number of candidate predictors, some of which are likely to be associated with survival. One
difficult task is to search among an enormous number of potential predictors and to correctly identify
most of the important ones, without mistakenly identifying too many spurious associations. Mere
variable selection is insufficient, however, for the information from the multiple predictors must
be intelligently combined and calibrated to form the final composite predictor. Many commonly
used procedures over-fit the training data, miss many important predictors, or both. Although it
is impossible to simultaneously adjust for a huge number of predictors in an unconstrained way, we
propose a method that offers a middle ground where some partial multivariate adjustments can be
made in an adaptive fashion, regardless of the number of candidate predictors. We demonstrate the
performance of our proposed procedure in a simulation study within the Cox proportional hazards
regression framework, and we apply our new method to a publicly available data set to construct
a novel prognostic gene signature for breast cancer survival.

2 Body

As outlined in the original Statement of Work, we compared both novel and existing techniques for
reducing the huge number of predictors to a smaller subset of viable candidate genes for inclusion
in a prognostic signature for breast cancer survival outcomes. We developed a novel approach to
both selecting genes and estimating the relationship of each with survival outcomes in a constrained
fashion, even when the number of candidate genes is much larger than the number of independent
subjects. In Section 2 of the appended Technical Report, “Constructing Multivariate Prognostic
Gene Signatures with Censored Survival Data,” we describe our novel “shrinkstage” algorithm,
and our simulation results appear in Section 3. Our simulations suggest that our proposed method
appears to work relatively well, avoiding the need for data splitting or cross-validation to reduce
bias in estimated coefficients due to its inherent control of overfitting via a sort of adaptive shrink-
age estimation technique. Our shrinkstage method clearly outperformed stepwise selection and
univariate screening methods, demonstrating that these existing approaches are unsatisfactory. We
wrote custom R and S-Plus software to implement our novel method, as well as to implement a
stagewise approximate lasso method [2, 6], a partial least squares (PLS) [1–5] type approach, and
a principal components analysis (PCA) [8] method. We observed that PLS approaches grossly
overfit the training data, while PCA methods severely underfit, making both quite unsatisfactory
in the context of high-dimensional Cox regression. While the stagewise approximate lasso has the
most in common with our approach, it seems to suffer from underestimating the association of each
predictor with the outcome and/or including too many spurious predictors.

Once we had a novel method that appeared to outperform several existing methods in our
simulation studies, we applied it to van de Vijver’s [7] publicly available breast cancer survival data
set. Our findings appear in Table 2 and Section 4 of the appended Technical Report, where we
compare the results of our approach with various stepwise searches and the stagewise approximate
lasso, with and without adjusting for clinical covariates, as well as a univariate analysis. Whereas
van de Vijver’s prognostic signature was a function of the expressions of 70 genes, while ignoring
known clinical predictors such as estrogen receptor alpha expression measurement (ESR1), we
identified a prognostic signature based on only 5 genes and adjusted for ESR1 as well as the St.
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Gallen criterion. As noted in Section 4 of the appended Technical Report, our prognostic signature
is highly correlated with that of van de Vijver, and we assert that van de Vijver’s signature included
a lot of genes with essentially redundant information. We plan to submit a revised version of our
Technical Report to a peer-reviewed journal for publication in the coming months, following some
editorial updates.

3 Key Research Accomplishments

• Developed novel “shrinkstage” algorithm for constructing a prognostic signature based on
censored survival data

• Conducted a simulation study to compare our novel approach to existing methods

• Applied our novel method to a breast cancer survival data set to identify a novel prognostic
signature

• Summarized research findings in a Technical Report, in preparation for submission to a peer-
reviewed journal

• Presented interim results at multiple professional meetings

4 Reportable Outcomes

Constructing Prognostic Gene Signatures for Cancer Survival. March 2005
Regular contributed oral presentation.
ENAR (International Biometric Society). Austin, TX.

Identification of High-Dimensional Prognostic Gene Signatures for Breast Cancer Survival.
Principal Investigator’s poster presentation. June 2005
Era of Hope 2005 Department of Defense Breast Cancer Research Program Meeting.
Philadelphia, PA.

Identification of High-Dimensional Prognostic Gene Signatures for Breast Cancer Survival.
Invited colloquium speaker. March 2006
Department of Biostatistics, University of Buffalo. Buffalo, NY.

Constructing Multivariate Prognostic Expression Profiles for Survival Endpoints. July 2006
Regular contributed oral presentation.
IBC (International Biometric Society). Montreal, Quebec, Canada.

Constructing Multivariate Prognostic Expression Profiles for Survival Endpoints. August 2006
Regular contributed oral presentation.
Joint Statistical Meetings. Seattle, WA.
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Constructing Multivariate Prognostic Gene Signatures with Survival Endpoints. October 2006
Technical Report 06/09, Department of Biostatistics and Computational Biology,
University of Rochester Medical Center, Rochester, NY.

5 Conclusions

We introduced a novel method of constructing a prognostic gene signature based on censored
survival data, with multivariate adjustments for clinical covariates as well as for multiple selected
genes. We chose to reduced the problem to that of model selection and parameter estimation in
the Cox proportional hazards model framework in the context of high-dimensional data, where
most standard model selection strategies and estimation methods typically break down rather
badly. Given this choice of model framework, our procedure inherits both strengths and weaknesses
typically associated with the Cox model. For example, if interactions are to be modeled, they must
first be explicitly defined by the user and included as additional candidate predictors, and doing this
can quickly expand the number of candidate predictors to enormous numbers, making the model
selection problem that much harder. In our work, we chose to assume no interactions, including
interactions with time, though such enrichments could be used to partially relax the proportional
hazards assumption.

We compared our procedure to stepwise selection and to fitting a Cox model to a univariately
screened set of predictors. In a simulation setting where the Cox model is correct, provided all of the
true predictors are included in the model, we demonstrated the clear superiority of our procedure to
these simple standard approaches, both of which were observed to perform quite poorly. However,
in future work we plan to investigate a wider set of simulation models, as well as to compare some
of the more recently introduced competing approaches, and we look forward to further improving
our method, e.g. given its current dependence on ad hoc tuning parameters.

We applied our novel method to breast cancer survival data, using a data set with a relatively
large number of subjects, and we identified a much simpler prognostic signature compared with
previous attempts by others. Our profile focuses on just 5 key genes, and it includes already
established clinical predictors, which we argue is the most sensible way to proceed. Our results
suggest that profiles based on 70 or more genes might be overly complicated, while only a handful
might be needed for effective prognosis. Unfortunately we did not have access to the expression
data on the vast majority of the nearly 25,000 genes, and so we are left to wonder how many of
them might also be associated with survival, adjusted for clinical predictors and other genes.

6 References

References

[1] Garthwaite PH (1994). An interpretation of partial least squares. Journal of the American
Statistical Association 89:122–127.

[2] Hastie T, Tibshirani R, and Friedman J (2001). The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer-Verlag, New York.

Page 6



[3] Li H and Gui J (2004). Partial Cox regression analysis for high-dimensional microarray gene
expression data. ISMB04/Bioinformatics (in press).

[4] Nguyen DV and Roche DM (2002). Tumor classification by partial least squares using microar-
ray gene expression data. Bioinformatics 18:39–50.

[5] Park PJ, Tian L, and Kohane IS (2002). Linking expression data with patient survival times
using partial least squares. Bioinformatics 18:1625–1632.

[6] Tibshirani R (1996). Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society, Series B 58:267–288.

[7] van de Vijver MJ, He YD, van’t Veer LJ, et al (2002). A gene-expression signature as a
predictor of survival in breast cancer. New England Journal of Medicine 347:1999–2009.

[8] Wold H (1966). Estimation of principal components and related models by iterative least
squares. In Multivariate Analysis, Krishnaiaah PR (Ed.), pp. 391–420. Academic Press.

7 Appendices

Constructing Multivariate Prognostic Gene Signatures with Survival Endpoints (2006).
Technical Report 06/09, Department of Biostatistics and Computational Biology,
University of Rochester Medical Center, Rochester, NY.

8 Key Personnel Receiving Salary Support

1. Derick R. Peterson, PhD

2. Andrei Yakovlev, PhD

Page 7



Constructing Multivariate Prognostic Gene Signatures with

Censored Survival Data

Derick R. Peterson, PhD

Department of Biostatistics and Computational Biology

University of Rochester

Rochester, New York 14642

email : peterson@bst.rochester.edu

Summary. Modern high-throughput technologies allow us to simultaneously measure the expres-

sions of a huge number of candidate predictors, some of which are likely to be associated with

survival. One difficult task is to search among an enormous number of potential predictors and to

correctly identify most of the important ones, without mistakenly identifying too many spurious

associations. Mere variable selection is insufficient, however, for the information from the multiple

predictors must be intelligently combined and calibrated to form the final composite predictor.

Many commonly used procedures over-fit the training data, miss many important predictors, or

both. Although it is impossible to simultaneously adjust for a huge number of predictors in an un-

constrained way, we propose a method that offers a middle ground where some partial multivariate

adjustments can be made in an adaptive fashion, regardless of the number of candidate predictors.

We demonstrate the performance of our proposed procedure in a simulation study within the Cox

proportional hazards regression framework, and we apply our new method to a publicly available

data set to construct a novel prognostic gene signature for breast cancer survival.

Key words: Micro-array data; prognostic signature; gene selection; Cox proportional hazards

regression; censored survival data.
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1 Introduction

Modern micro-array technologies now allow us to simultaneously measure the expression of a huge

number of different genes and proteins, some of which are likely to be associated with cancer

prognosis. While such gene expressions are unlikely to ever replace important clinical covariates,

evidence is already mounting that they can provide a significant amount of additional predictive

information [1] [3] [6] [7] [8] [9] [10] [13] [12] [14]. The difficult task, then, is to search among

an enormous number of potential predictors and to correctly identify most of the important ones,

without mistakenly identifying too many spurious associations.

Many commonly used procedures unfortunately over-fit the training data, leading to subsets

of selected genes many of which are unrelated to the outcome in the target population, despite

appearing predictive in the particular sample of data used for subset selection. Part of the reason

for this lies in the extreme biases induced by applying standard estimation methods as if genes had

not been picked based on their estimates being larger than those of other genes. Thus, our proposed

method not only tackles the issue of identifying important genes but also that of better estimating

their relationships with the outcome. Indeed, such improved estimation is a key component to

selecting appropriate genes in the first place, since selection is typically based upon estimates. Both

gene selection and parameter estimation are critical components in constructing valid prognostic

gene signatures, and these tasks should ideally be intertwined.

Some genes might only be useful predictors when used in concert with certain other related genes

and/or with clinical covariates, yet the vast majority of available methods are inherently univariate

in nature, based only on the marginal associations between each predictor and the outcome. While

it is impossible to simultaneously adjust for a huge number of predictors in an unconstrained way,

we aim to provide a middle ground where some partial adjustments can be made, even in the face

of a huge number of candidate predictors.

One multivariate approach that has been considered by some is to use principal components
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analysis (PCA) to construct n−1 or fewer orthogonal eigengenes, each of which is a linear combina-

tions of all p (typically log-transformed) gene expressions [4]. Associations between these eigengenes

and the clinical outcome can then be explored in hopes of constructing prognostic signatures [14].

However, unless some (typically ad hoc) approach is implemented to exclude the contributions of

the majority of the genes from any given eigengene, no gene selection is performed and the predic-

tive signal in the truly important genes can easily be swamped by the noise of the many others. On

the other hand, if many elements of the PCA loadings are thresholded to zero after PCA, the key

properties of orthogonality and maximal variation among the first few eigengenes are destroyed,

begging the question of why PCA was applied in the first place.

A somewhat related strategy uses the idea of partial least squares (PLS, [15] [2] [4]) to derive

predictors as linear combinations of the (log) gene expressions. In its pure form, each PLS predictor

gives weight to every gene, like PCA. However, the key difference is that these weights are a function

not only of the gene expression matrix but also of the outcome. In fact, the first PLS direction

is simply formed by performing univariate regressions of the outcome on each of the p genes and

using the resulting unadjusted regression coefficients to form the first linear combination. Thus,

genes with stronger marginal associations with the outcome are seemingly appropriately given more

weight than are genes that are marginally unrelated to the response. The result is that models

based on just a handful of PLS components fit the training data far better than models based on a

large number of PCA eigengenes. In fact, PLS fits the training data far too well. Indeed, when p

is much larger than n, even the very first PLS predictor can over-fit the training data in the sense

that (1) the magnitude of the estimated coefficients are far too large, on average, (2) the likelihood

is increased by more than if all of the truly important genes were included by an oracle, and (3)

the predictive performance with independent test data is miserable. Moreover, adding additional

PLS components results in an infinite likelihood in short order, saturating the model long before

n − 1 (or even
√

n) components can be entered. The number of PLS components is not even close

to equivalent to the classical notion of degrees of freedom, given that each component is formed
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by estimating p parameters. Variations on PLS, where many of the gene loadings are shrunken to

zero via some ad hoc gene selection procedure might perform somewhat better [6] [7] [5]. However,

in the extreme case where all but one of the gene contributions is shrunken to zero for each PLS

predictor, the method becomes very similar to classical forward stepwise selection. And since the

stepwise selection approach is already too greedy an algorithm, in the sense that it can be shown

to badly over-fit the training data, the utility of these variations on PLS are also in serious doubt.

2 Stagewise Forward Search with Shrinkage Estimation

Our approach is a stagewise forward search algorithm that uses constrained estimation, or “shrink-

age,” at every stage. The first step of this algorithm selects precisely the same 1st gene as would

both stepwise forward selection or most any univariate approach, i.e. that gene whose contribution

to the unconstrained likelihood for the univariate regression is largest. However, the parameter

estimate for this gene is then iteratively shrunken toward the null value (which is typically 0) and

then temporarily fixed at this value at the next stage where the set of candidate genes is again

searched for the best gene to add to the model. At each stage, only a single parameter is allowed to

freely vary in the likelihood, which helps to alleviate the problems experienced by standard step-

wise selection procedures as the number of selected variables grows. Thus, this method has much

in common with stagewise forward search algorithms [4] that have been used in machine learning

to approximate Tibshirani’s L1-penalized least squares lasso [11] procedure. However, seemingly

subtle differences in such algorithms can result in substantial differences in performance. If the

lasso stopping rule is weak, then a large number of unrelated genes are typically selected, while

a strict stopping rule results in severe underestimation of the associations between each gene and

the outcome (i.e. over-shrinkage or under-fitting), in addition to missing several important genes.

In either case, the estimated prognostic gene signature resulting from the lasso-type approach will

not perform particularly well.

Our proposed method, which we call the shrinkstage method, overcomes some of the difficul-
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ties associated with the lasso approach due to our novel, easily implemented estimation method

used at each stage. First, rather than constraining the estimate at each stage to be below some

small increment threshold as with the lasso, we simply shrink the maximum likelihood estimate

at each stage by a given shrinkage factor 0 < γ ≤ 1. Next, once each new variable has entered

the model, we update all of the parameter estimates in the model, but in a constrained fashion.

First, we iteratively further shrink any of the estimates if the reduction in the likelihood compared

with unconstrained estimation (of the single parameter) falls below a given threshold, implied by

an approximate p-value-to-shrink. Once the iterative shrinking stage is complete, we allow for

an iterative growth stage, governed by an approximate p-value-to-grow. In particular, we allow

each parameter estimate to grow by γ times the difference between the current estimate and the

maximum likelihood estimate, provided the increase in the likelihood is sufficiently large. Once

the growth stage is complete, we consider adding the next variable, according to an approximate

p-value-to-enter, which implies the stopping rule. The result is a method which more fully adjusts

for the effects of strong predictors early on than does the forward stagewise approximate lasso

method, resulting in not only superior parameter estimates but also better selection of relevant

genes. However, the parameter estimates still never grow all the way to the maximum likelihood

estimates, which protects against over-fitting, in contrast to stepwise subset selection methods.

3 Simulation Results

We tested the new method proposed in Section 2 by applying it in the critical simulation setting

where we know the true generating model. In this section we describe our simulation model, the

details of each of the methods we compared, the criteria we used to assess the performance of each

method, and the results of our simulation experiment.

We generated 20 independent simulated sets of censored survival data, each containing n = 125

independent subjects and p = 1000 correlated gene expression levels, with only 12 of the genes

associated with survival. Each algorithm was applied to precisely the same 20 simulated data sets.
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The distribution of the (log) gene expression levels was multivariate normal with unit variances and

an autoregressive correlation structure with maximal correlation r = 0.5 between any two adjacent

genes. Thus, every gene was positively correlated with every other gene, yet each gene was only

strongly correlated with a handful of other genes since the correlations tail off geometrically. The

distribution of the ith patient’s survival time Ti was taken to be exponential with rate XT

i
β, where

Xi denotes the p-vector of (log) gene expression levels for subject i and β denotes the p-vector

of log-hazards, or model parameters. The distribution of the independent random censoring time

C was standard exponential (rate 1), which induced approximately 50% censoring in each data

set since the observed survival data for each subject is the follow-up time Yi = min(Ti, Ci) and

the censoring indicator ∆i = I(Ti ≤ Ci). For simplicity, each element of the parameter vector β

contained 1 of 3 possible values: 0 (unrelated gene), 1 (up-regulation increases risk by 2.718-fold per

SD), or -1 (down-regulation increases risk by 2.718-fold per SD). The magnitude of 1 was chosen so

as to be large enough to be detectable by good procedures yet not so huge as to be easily detectable

by even poor procedures. Rather than vary the magnitudes of the coefficients in this particular

experiment, we chose to vary only the correlations between the relevant genes, as follows. Out of

the 1000 autocorrelated genes, 988 were unrelated to survival, while the following 12 were relevant

predictors: 150, 151, 300, 302, 450, 453, 600, 604, 750, 755, 900, 906; and the corresponding

12 nonzero coefficients were 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1; thus, risk was associated with

up-regulation for 6 genes and down-regulation for another 6. The correlation between (log) gene

expressions 150 and 151 was 0.5, that between 300 and 302 was 0.25, and so on, so that the

correlation for genes 900 and 906 was only 0.015625. Also note that, e.g., irrelevant gene 301 had

correlation 0.5 with both genes 300 and 302, noise gene 602 has correlation 0.25 with both genes

600 and 604, etc.

The following performance criteria were computed for each method applied to each of the 20

simulated data sets. We counted the number of relevant genes identified (out of 12), the number of

irrelevant genes additionally selected (out of 988), and the total number of genes selected (or the
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size of each model). Since the goal here is not just to identify genes but to construct a complete

prognostic gene profile, i.e. a linear combination of (log) gene expression levels that predicts survival,

good estimation of the log-hazard-ratios for each gene is also critical. Thus, as a criterion to judge

the predictive performance of each method, we used a version of the Mean Squared Prediction Error

(MSPE) for the linear predictor of the Cox Proportional hazards model, given by the multivariate

distance

MSPE =
(

β̂ − β
)T

Σ
(

β̂ − β
)

(1)

between the true vector β and the estimated p-vector β̂, where the latter contains zeroes for

every gene that was not selected, and where Σ denotes the covariance matrix of the (log) gene

expressions. The more common definition of MSPE would be to replace Σ in equation (1) by

its empirical random counterpart XT X, where X denotes the (log) gene expression matrix from

an independent test sample. While we certainly could have done this, we note that by replacing

XT X by its expectation Σ we reduce the simulation-to-simulation variability of MSPE, while

retaining all of its attractive properties, including the fact that it depends on the observed gene

expression values in the training data only through the parameter estimates β̂. The MSPE does

ignore estimation of the nonparametric baseline hazard function, which is treated as an infinite-

dimensional nuisance parameter when fitting the Cox model using the partial likelihood. But the

MSPE takes proper account of the covariance Σ of the (log) gene expression values and penalizes

for selecting inappropriate genes, missing relevant genes, and for estimation error (overestimating

or underestimating each gene’s effect). If every parameter were perfectly estimated, MSPE would

be 0, so methods with the smallest MSPE provide superior predictions to those with larger MSPE.

We also calculated the Root Mean Squared Prediction Error (RMSPE), which is simply the square

root of MSPE, since it has the nice interpretation of being the magnitude of a typical prediction

error (on the original log-hazard rate scale).

For the shrinkstage method, the following ad hoc control parameters were used: the shrinkage
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Table 1: Median Performance Over 20 Simulated Sata Sets
Method MSPE RMSPE #true #false size

oracle 0.6 0.8 12.0 0.0 12.0
shrinkstage 5.5 2.4 8.5 5.5 14.0
univariate 9.3 3.1 6.0 7.0 13.0
stepwise 13.0 3.6 6.5 8.0 14.5
empty 14.0 3.7 0.0 0.0 0.0

factor γ was 0.85, p-to-enter was 0.015, p-to-shrink was 0.8, and p-to-grow was 0.5. The stepwise

selection algorithm was started from the empty model and expanded at each iteration with a p-to-

enter of 0.0025; after each variable was entered, the stepwise algorithm was also programmed to

drop any previously entered variable with a p-to-drop of 0.0025 so that only those variables whose

Likelihood Ratio Test(LRT)-based p-values of 0.0025 or smaller were retained. These nominal p-

values for the stepwise algorithm were chosen so as to make the typical size of the resulting model

similar to the other procedures. However, it was clear that these values were still actually a bit too

high to prevent the stepwise procedure from occasionally selecting far too many genes (since after

the 16th selected gene, only garbage would typically enter). Thus, an additional stopping rule was

imposed to limit the stepwise procedure to selecting no more than n.7
u (or about 18, on average)

genes, where nu denotes the number of uncensored observations.

In addition the shrinkstage and stepwise methods, the following methods were compared. To

provide a guideline as to the worst tolerable MSPE, MSPE was calculated for the empty model

(selecting no genes); any method doing worse than this (MSPE = 14), e.g. when too many unrelated

genes are selected, is obviously a seriously flawed procedure. To provide an envelope as to nearly

the best (perhaps, unattainable) performance one might expect, the oracle model was fit, including

the 12 relevant genes and no others. In order to assess the performance of typical univariate

procedures, the following univariate procedure was compared: each parameter was estimated via

univariate Cox regression, and only those genes with nominal LRT p-values less than 0.005 were

selected; all of their parameters were then simultaneously estimated by including just those selected

genes in a single multivariate Cox model. Again, the nominal alpha level of 0.005 was chosen so as
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to make the average size of the selected subset close to 12, like the other methods; a lower threshold

would choose fewer noise variables but also identify fewer correct genes. The medians over the 20

simulated data sets for all of the methods appear in Table 1.

As is clear from Table 1, our proposed methods perform much better than both stepwise se-

lection and the univariate selection procedures, choosing more of the true predictors (8-11 vs. 6-7,

typically), selecting fewer of the unrelated genes (1-6 vs. 7-8), and attaining lower prediction

errors. The typical prediction error (median RMSPE) for stepwise selection (3.6) is 50% larger

than that for our shrinkstage method (2.4), e.g. What was somewhat surprising was that even

the univariate procedure outperformed the stepwise algorithm here, which probably explains why

few researchers are employing such stepwise selection procedures with high-dimensional microar-

ray data. The shrinkstage method can also be improved, e.g. via judicious choices of the tuning

parameters, though we note that, in contrast to the stepwise method, its performance was very

stable over all 20 simulated data sets, which is encouraging. Altering the tuning parameters of

the stepwise and univariate methods to choose smaller models could reduce the prediction error

somewhat and select fewer incorrect genes, but there is no way to get either procedure to select as

many correct genes as our method and thus no way to reduce the prediction error to the levels we

have already achieved.

Although not shown in Table 1, we also began investigating the performance of sequentially

adding PCA-derived eignengenes, as well as PLS-type predictors. We observed that even if a large

number of PCA-derived eigengenes are included, the models essentially underfit severely, to the

point where the MSPE is hardly lower than the empty model. The reason for this seems to be

that since each eigengene is a linear combination of 988 noise genes and 12 true predictors, the

maximum likelihood coefficient estimates have to be very close to 0 so as to keep the contributions

from noise genes suppressed. And while PCA seems to essentially never overfit, PLS often overfits in

step one. Adding even a single PLS-derived predictor resulted in grossly overestimated coefficients,

with correspondingly poor MSPE that was typically worse than the null model. Thus, we cannot
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recommend either of these procedures for use in the context of high-dimensional predictors, at least

when the true predictors are relatively low-dimensional, as in our simulation context here.

4 Analysis of Breast Cancer Survival

We applied our novel method to van de Vijver et al’s [12] publicly available breast cancer survival

data on n=295 subjects with expressions measured on 70 genes that van’t Veer et al [13] previously

screened from 24,885 candidate genes. Since data on the vast majority of the 24,885 candidate

genes was unavailable to us, we were unfortunately unable to shed any light on which genes beyond

the 70 provided might be related to survival. However, even when only considering 70 genes, we

observed interesting differences in the results of applying various methods to select the predictive

genes and estimate their impact on mortality.

Table 2 displays the relative hazard of mortality per unit change in the standard deviation

of the expression of each gene. Only those 32 of the 70 genes that were selected by at least one

procedure are shown, whereas the estimated relative hazards are all 1.00 for the other 38 genes. The

genes are sorted by their univariate approximate large-sample p-values based on likelihood ratio

tests, and the top 16 genes had univariate p-values sufficiently small to satisfy even a 0.05 level test

with a Bonferroni correction for 24,885 tests, while 63 of the 70 genes would meet the unadjusted

nominal 0.05 level test. The uni.Bonf column contains the corresponding unadjusted relative

hazards for each of the top 16 univariately selected genes. Although Bonferroni-corrected tests are

often criticized for being overly “conservative,” we remark that even this might not necessarily be

true, in general. The Bonferroni correction is indeed conservative when applied to exact p-values

based on nonparametric tests, or when each and every p-value is exactly uniformly distributed

under the null hypothesis, but these conditions are unfortunately seldom met with gene expression

data in practice. In the present context, e.g., one would need to trust the accuracy of the large

sample approximation based on only 79 events among 295 subjects out to 6 or more decimal places

of the approximate p-value in order to begin to have confidence that the Bonferroni correction is
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Table 2: Relative hazards per SD of expression for several methods applied to van de Vijver et al’s
breast cancer data on n=295 subjects and 70 genes (screened from 24,885), sorted by univariate
p-value. 38 of the 70 genes selected by none of the methods (all relative hazards = 1.00) not shown.

gene uni.Bonf ss ss.adj lasso lasso.adj step step.adj step.back

NM.003981LRa 2.10 1.28 1.00 1.05 1.00 1.00 1.00 1.00
NM.016359LRa 2.13 1.76 2.13 1.37 1.40 2.40 2.25 1.00
Contig38288.RCLRa 1.87 1.25 1.00 1.16 1.00 1.00 1.00 1.00
NM.001809LRa 1.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Contig55725.RCLRa 1.83 1.00 1.00 1.00 1.00 1.00 1.00 1.00
NM.014321LRa 1.87 1.00 1.00 1.00 1.00 1.00 1.00 1.00
NM.020974LRa 0.51 1.00 1.00 0.95 1.00 1.00 1.00 1.00
NM.004702LRa 1.81 1.00 1.00 1.00 1.00 1.00 1.00 1.00
NM.014791LRa 1.76 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AL137718LRa 1.79 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Contig48328.RCLRa 0.51 1.00 1.00 0.87 1.00 1.00 1.00 1.00
NM.016448LRa 1.83 1.00 1.00 1.04 1.08 1.00 1.00 1.95
Contig28552.RCLRa 1.76 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Contig46218.RCLRa 1.72 1.00 1.00 1.00 1.00 1.00 1.00 1.00
NM.005915LRa 1.70 1.00 1.00 1.00 1.00 1.00 1.00 1.00
NM.000849LRa 0.57 1.00 1.00 1.00 1.00 1.00 1.00 1.00

NM.002916LRa 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.54
Contig46223.RCLRa 1.00 1.00 1.00 0.96 1.00 1.00 1.00 0.71
NM.020188LRa 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.03
AF052162LRa 1.00 1.46 1.41 1.16 1.12 1.55 1.47 1.61
X05610LRa 1.00 1.42 1.34 1.19 1.08 1.60 1.44 1.72
Contig63649.RCLRa 1.00 1.34 1.33 1.19 1.13 1.47 1.42 1.39
NM.003875LRa 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.63
AF201951LRa 1.00 1.00 1.00 0.90 0.95 1.00 1.00 1.00
NM.003862LRa 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.37
AF257175LRa 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.59
NM.006117LRa 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.78
NM.002073LRa 1.00 1.00 1.00 1.00 1.02 1.00 1.00 1.00
AF055033LRa 1.00 1.29 1.38 1.09 1.21 1.37 1.00 1.67
NM.000599LRa 1.00 1.00 1.00 1.00 1.00 1.00 1.42 1.00
Contig32125.RCLRa 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.36
Contig32185.RCLRa 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.70
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actually conservative here, even setting aside the very serious issue of confounding that plagues all

univariate methods.

With the exception of uni.Bonf, the rest of the estimated relative hazards in Table 2 are all

adjusted in some fashion for the other selected genes with non-unity relative hazards in the same

column, similar to any multivariate Cox proportional hazards regression model. Before considering

any genes, we first selected a clinical-only Cox model based only on the 4 available clinical indica-

tors: ESR1 (1 = estrogen receptor alpha expression, 0 = no), St.Gallen criterion (1 = low risk, 0 =

high risk), NIH criterion (1 = low risk, 0 = high risk), and lymph node status from the pathology

report (1 = positive, 0 = negative). Both ESR1 (HR = 0.332, p < 0.000005) and the St. Gallen

(HR = 0.205, p = 0.036) indicators were associated with reduced mortality when included in the

same model, despite their heavy interdependence given that ESR1 is necessary for St. Gallen, while

neither the NIH criterion nor the lymph node status appeared to predict mortality risk, with or

without adjusting for other predictors (p > 0.15). The ss.adj and ss columns contain the results

of applying our novel shrinkstage algorithm, with and without forcing the ESR1 and St. Gallen

clinical indicators into the model, respectively. The five genes selected by both of these proce-

dures were NM.016359LRa, AF052162LRa, X05610LRa, Contig63649.RCLRa, and AF055033LRa,

and we suggest that these particular 5 genes are thus deserving of further investigation. When

the clinical predictors were excluded from the model, NM.003981LRa and Contig38288.RCLRa were

additionally selected by our procedure; our interpretation of this is that the information in these

2 genes is highly correlated with the 2 clinical predictors, and thus these genes add very little

prognostic information to the available clinical predictors. Of the 5 genes we selected from the 70

available, adjusted for the clinical predictors, it is interesting but not entirely surprising to us that

only 1 fell in the set of the top 16 univariately ranked genes. Looking at the correlations between

NM.016359LRa and the other top 15 univariately ranked genes, we found that 10 of the 15 pairwise

correlations fell between 0.6 and 0.8, indicating a lot of redundant information –not obviously help-

ful for predicting mortality risk. Finally, we re-assessed the independent conributions of ESR1 and
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the St. Gallen indicator via likelihood ratio-type tests to remove each, while leaving the other in the

model, now adjusted for our 5 selected genes via an offset to force the gene coefficients to remain

at their shrinkstage-estimated levels (resulting in a somewhat lower likelihood from the submodels

than would be obtained if we allowed the gene coefficients to be re-estimated in each submodel).

While ESR1 was still significant (p = 0.0077), the St. Gallen indicator was not (p = 0.45) unless

tested jointly with ESR1 (p = 0.0165 on 2 df), adjusted for the 5 selected genes. This implies that

whatever predictive information was contained in the St. Gallen indicator was apparently captured

by our low-dimensional gene profile along with ESR1. However, since our development of the gene

profile was predicated on adjusting for both ESR1 and the St. Gallen criterion, we did not remove

St. Gallen but rather simply note the interesting loss of significance, after genetic adjustment. We

also re-assessed the potential contributions of lmyph node status and the NIH criterion, since it is

possible that they could become useful in tandem with our selected gene profile, but there was still

no evidence that either improved the model in any way (p > 0.5).

We programmed a custom stagewise approximation to the lasso procedure in the Cox model

framework, with an option to force variables into the model without constraints on their coefficients,

and with a default novel stopping rule based on a nominal 0.05 level likelihood ratio test to enter a

variable or increase the coefficient on a previously entered variable. We ran this procedure first just

on the 70 genes (lasso) and again with the 2 clinical indicators additionally forced into the model

(lasso.adj). Without adjusting for the clinical predictors, the lasso selected 12 genes, 6 of which

were among the top 16 univariately selected genes, which was rather different from our shrinkstage

selections. In fact, the unadjusted lasso selected several genes that no other multivariate method

did, with most of them strongly univariately associated with survival. We believe that this is

because at the early stages of the procedure the selections are not sufficiently adjusted for other

important multivariate predictors, causing the lasso to start off acting much like a univariate

selection procedure. Adjusted for the ESR1 and St. Gallen indicators, however, the lasso selected

8 genes, with only 2 among the top 16 univariate genes, and the overall profile was quite similar
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to ss.adj but with a few more selected genes and with more attenuated relative hazard estimates.

This fits with our anecdotal simulation experience with the lasso in the Cox model (not shown)

in that it appears to over-shrink parameter estimates of true predictors unless the stopping rule is

very weak, while selecting too many false predictors unless the stopping rule is very strong. But it

appears that adjusting for the relevant clinical predictors did improve the lasso’s performance.

We also applied 3 versions of stepwise Cox regression, all using a nominal 0.01 level likelihood

ratio test to stop: step represents a stepwise procedure starting from the null model, and without

forcing the clinical predictors in the model; step.adj starts from the model with the ESR1 and

St. Gallen criteria forced into the model; and step.back starts from the full model with all 70

genes, with both clinical predictors forced into the model. Interestingly, the unadjusted stepwise

search selected exactly the same 5 genes as ss.adj, though 4 of the 5 relative hazard estimates were

slighlty stronger. Adjusting for the clinical indicators resulted in slightly more attenuated relative

hazard estimates for the genes, and NM.000599LRa was selected instead of AF055033LRa, which

hardly matters given that the correlation between these 2 gene expressions was 0.975 (indicating

that either is probably nearly as good a predictor). Starting from the full 72-predictor model and

stepping back resulted in selecting 14 genes, 8 of which were selected by none of the other procedures.

Moreover, this was the only procedure not to select NM.016359LRa. Overall, we do not believe that

step.back performed well here, and we cannot recommend it as a general approach; certainly such

an approach is never even an option when the number of candidate predictors exceeds the number of

uncensored observations. The apparently reasonable performance of the forward stepwise searches

is probably in part due to the relatively limited number of available predictors here, as it comes

as somewhat of a surprise in comparison with our simulation results that suggest that forward

stepwise searches typically miss many important predictors and often select far too many irrelevant

genes. In fact, the high concordance of our novel method with the forward stepwise search here

leads us to believe that there might be several important predictors among the 24,815 genes that

were pre-screened and unavailable to us for this analysis.
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Finally, our definition of a prognostic signature is not merely a set of genes but rather a complete

equation that precisely defines a single continuous risk score, based here on the linear predictor

of the Cox model (for the log-relative-hazard). For the ss.adj procedure that we advocate, the

continuous risk score is simply calculated as:

risk− score = −0.626(ESR1) − 0.682(St.Gallen) + 2.908(NM.016359LRa) + 1.160(AF055033LRa)

+2.053(AF052162LRa) + 1.186(Contig63649.RCLRa) + 1.844(X05610LRa)

Note that the coefficients on the gene expressions in the risk score equation above correspond with

the original gene expression scales, not standardized by their sample standard deviations, whereas

the relative hazards reported in Table 2 are per unit standard deviation of change in order to

better compare the relative impact of each gene. The above risk score could potentially be used to

risk stratify future subjects based on these 5 genes and 2 clinical indicators, with lower risk scores

having superior prognosis –but until independently validated in a future study, caution should be

exercised in interpretation. For the 295 subjects used to develop this risk score, the distribution

of the risk score appeared approximately normal with mean -0.881, standard deviation 1.264, 75th

percentile 0.039, and 95th percentile 1.131. So, roughly speaking, positive risk scores correspond

to those in the upper quartile of risk. Van de Vijver et al ultimately classified each subject as

having “good” or “poor” prognosis by thresholding a subject-specific correlation coefficient of their

70-gene profile with the average gene profile of “good outcome patients,” defined as all patients

with no observed distant metastasis during follow-up, regardless of the length of follow-up. We

calculated the sample correlation coefficient between our risk scores and their continuous measure

to be be -0.783 (p < 0.000001), and a scatter plot revealed the relationship to be very linear. Thus,

although the agreement in prognosis not perfect and it is unclear which might be superior, the

concordance is relatively high, even though our signature is based on 14 times fewer genes. Since

the coefficients on all 5 of our selected genes are positive, higher expressions of these genes appear

to correspond with increased risk of mortality. Since the coefficients on both clinical predictors are
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negative, ESR1 and the St. Gallen indicator indeed correspond with lower risk, as their definitions

imply. Having ESR1 corresponds with a 46.5% reduction in risk, all other gene expressions being

the same, while meeting the St. Gallen criteria corresponds with a full 73.0% risk reduction, since

any woman satisfying the St. Gallen criteria also has ESR1 (and so the coefficients on ESR1 and

St.Gallen in the risk score equation are summed, prior to exponentiating to obtain the relative

hazard). Thus, any prognostic signature that ignores these available clinical predictors would seem

to be quite incomplete and potentially misleading. However, if our risk score equation reasonably

approximates the true log-relative hazard, it does imply that up-regulation of 3 or more of the 5 risk

genes by even a single standard deviation could more than offset the protective effects associated

with the St. Gallen criterion.

5 Discussion

We introduced a novel method of constructing a prognostic gene signature based on censored

survival data, with multivariate adjustments for clinical covariates as well as for multiple selected

genes. We chose to reduced the problem to that of model selection and parameter estimation in

the Cox proportional hazards model framework in the context of high-dimensional data, where

most standard model selection strategies and estimation methods typically break down rather

badly. Given this choice of model framework, our procedure inherits both strengths and weaknesses

typically associated with the Cox model. For example, if interactions are to be modeled, they must

first be explicitly defined by the user and included as additional candidate predictors, and doing this

can quickly expand the number of candidate predictors to enormous numbers, making the model

selection problem that much harder. In this paper, we chose to assume no interactions, including

interactions with time, though such enrichments could be used to partially relax the proportional

hazards assumption.

We compared our procedure to stepwise selection and to fitting a Cox model to a univariately

screened set of predictors. In a simulation setting where the Cox model is correct, provided all of the
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true predictors are included in the model, we demonstrated the clear superiority of our procedure to

these simple standard approaches, both of which were observed to perform quite poorly. However,

in future work we plan to investigate a wider set of simulation models, as well as to compare some

of the more recently introduced competing approaches, and we look forward to further improving

our method, e.g. given its current dependence on ad hoc tuning parameters.

We applied our novel method to breast cancer survival data, using a data set with a relatively

large number of subjects, and we identified a much simpler prognostic signature compared with

previous attempts by others. Our profile focuses on just 5 key genes, and it includes already

established clinical predictors, which we argue is the most sensible way to proceed. Our results

suggest that profiles based on 70 or more genes might be overly complicated, while only a handful

might be needed for effective prognosis. Unfortunately we did not have access to the expression

data on the vast majority of the nearly 25,000 genes, and so we are left to wonder how many of

them might also be associated with survival, adjusted for clinical predictors and other genes.
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